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A scaling condition for the age of a fluctuation state 
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Abstract. The stationary states of age-structured systems are analysed. The condition of 
stationarity allows us to express the state probabilities in terms of age-averaged transition 
probabilities. A new scaling hypothesis for the age a = T/ V - V - ’  ( V = the system extension 
and T - p) is suggested which affords the application of Van Kampen and Kubo-Matsuo- 
Kitahara approximations. 

1. Formulation of the problem 

Recently, we introduced a new type of age-dependent stochastic process (Vlad et a1 
1984a). Considering a physical system described by a set of macrovariables 

x = ( X , ,  . . . , X , )  

and assuming that the transition probabilities 

(1) 

W’At = W ( X +  X ’ ;  a)At, W A t  = W ( X +  X ” ;  a)At, . . . (2) , (3)  

depend on the age, a, of the state X, we proved that the state probability 

P d X  d a  = P(X, a ;  t )  d X  d a  jx la 9’ d X  d a  = 1, 

obeys the following system of age-dependent master equations ( A D M E ) :  

(4) 

(a ,  + a a ) P ( X ,  a ;  t )  = - 9 ( X ,  a ;  t )  W ( X +  X ’ ;  a )  dX’, (5) I,, i P(X, 0; t )  = I,, la, w(x‘+ X ;  ~ ’ ) P ( x ’ ,  a ’ ;  t )  dX‘da’ .  (6) 

ADME: 

I f  

W ( X  + X‘; a )  = W ( X  + X’) = independent of a, 

W (  X + X”; a )  = W (  X + X”) = independent of a 

( 7 )  

(8) 

(5) and (6) lead to the well known phenomenological master equation ( P M E )  (Gardiner 
1983): 

W ( X ’ + X ) P ( X ’ ;  t )  dX‘- W ( X + X ’ ) P ( X ;  t )  dX’ (9) 
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where 

P(X; t )  = P(X, a ;  t )  d a  fox 
(Vlad et a1 1984a). Otherwise, the ADME system reduces to a single integral equation 
in Z(X; t )  = P(X, 0;  t )  (Vlad ef a1 1984a). In principle, this one may be solved by 
means of a rather tedious normal mode analysis. For age-dependent transition prob- 
abilities, a first attempt to integrate the A D M E  making use of the Van Kampen 
(1961, 1976) or Kubo-Matsuo-Kitahara (Kubo et a1 1973, Kitahara, 1975) approxima- 
tions failed due to the fact that the corresponding extensivity ansatze are not conserving 
in time. However, these methods would be applied to steady states provided that a 
suitable scaling condition of the transition probabilities is to be found. On the other 
hand, in order to outline the physical meaning of our approach, the analysis of a 
simple physicochemical system would be of interest. These are the aims of this paper. 

2. Steady states 

Assuming the existence of a stationary solution 

PS' = F ( X ,  a )  

the A D M E  system becomes 

d,P"(X, a )  = -Ps'(X, a )  W(X+X'; a )  dX', (11) I*, I B"(X, 0 )  = Ix, I,, W ( X ' +  X; a')Pnt(X', a ' )  dX' da'. (12) 

A D M E :  

Equation (1 1) may be integrated directly giving 

Pyx, a )  = Z(X)$(X, a ) ,  (13) 
where 

Introducing the probabilities 

P"(X) = V ( X ,  a )  da ,  Ix PSt( X) dX = 1, (16) lom 
R"(a1X) = B'"'(X, a)/P"(X), lox RS'(a/X) d a  = 1. (17) 

Equations (14) and (15) yield 

P"(X, = Z(X)  lom *(X, a )  da ,  

Rs'(alX) = $ ( X ,  a)( lom $(X, a )  d a ) ' .  
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Combining now (17) and (19) we get 

where we see that the integration of A D M E  reduces to the finding out of P"(X). 

homogeneous integral equation for PSc(  X ) :  

~ ( x )  = lx, l ~ ( x ' )  w(x'+ x ;  a ')+(X',  a ' )  

Eliminating Z(X) and 9"(X, a )  from (12), (14), (18) and (20) leads to a linear 

X 

a'=O 

x ( JOE +(X, a )  da)(  +(X', a )  da)-l dX' da'. 

This equation, together with the normalisation condition 5 PSt d X  = 1 determines the 
probability P"(X). 

A more convenient form of (21) results from integrating (11) over a, yielding 

Pyx, 02) -pyx, 0) = - IX, lox Sst(X, a )  W ( X +  X'; a )  dX' da. (22) 

As P"(X) is finite, from (16) and (18) it follows that 

?Pyx, m) = 0, +(X, oc) = 0. (231, (24) 

Eliminating V ( X ,  0) between (12) and (22), inserting P"(X, a )  from (20) and making 
use of (23) we obtain 

r 

where 

@(X + X')  = jox W(X -+ X'; a)R"(alX) da, etc 

are age-averaged transition probabilities. 

indeed, from these equations we have 
The equivalence between (21) and (25) is a consequence of (15), (24) and (26): 

Inserting (26) and (27) into (25), we recover (21). 
Formally, (25) is similar with the stationary form of the phenomenological master 

equation (9). In spite of this formal coincidence, it is not possible, on the basis of 
(25), to calculate the bitemporal correlation functions (X,(t)X,(t + 7)). This can be 
done only from the ADME. Obviously, only in the case of age-independent transition 
probabilities, (25) becomes a 'true' PME. 

3. A scaling hypothesis 

If the state variables X I , .  . . , X ,  are extensive, a scaling hypothesis for ADME might 
be suggested by the classical one 

W(X + X') = Vw(X/ V; AX) = V W ( X ;  AX) - VI (28) 
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where V is the system extension, 

x = X / V  and A X = X ' - X  

(Van Kampen 1961, 1976, Kubo er a1 1973, Kitahara 1975). 
Taking into account (28), (19) leads to 

R"(a(X) d a  = w ( x )  exp(-aVw(x)) d(aV),  (31) 

with 

w ( x )  = V- 'n(X)  = w(X/ V; AX) dAX- V', Lx 
n ( X ) =  W ( X + X ' ) d X ' =  V w(x;AX)dAX- V'. (33) i,, LX 

Equation (31) suggest that the age a may be scaled as 

a = r / V ,  T-V' or T = U V  (34) 

From (34), the following extension to age-dependent systems of (28) may be 
assumed: 

W ( X + X ' ;  U ) =  Vw(X/V;aV;AX)-  V', AX=X'-X.  (36) 

If (36) is valid, (19) and (26) become 

R"(a1X) d a  = exp ( - 5:' w(X/ V, T ' )  dT') 

- 1  

x [ lor exp( - 1; w(X/ V, 7') dr ' )  dr"] d(aV),  

and 

(37) 

*(X+ X') = VIo= w(X/ V; 7"; AX) exp( - 6 w(X/ V, T ' )  dr ' )  dT" 

- 1  

x [lox exp( - 1; w(X/ V, 7') dr ' )  dr"] 

= VC(X/ V, AX) - V', (38) 

with 

w(X/ V, T ' )  = lAx w(X/ V; T ' ;  AX) dAX (39) 

and thus the age-aver,aged transition probabilities are subjected to a scaling condition 
similar with (28). It follows that the 'phenomenological master equation' (25) can be 
solved by means of Van Kampen and Kubo-Matsuo-Kitahara approximations. 
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The physical meaning of (34)-(39) is clear: the age of a given state, X, hyperbolically 
decreases with the increase of the system extension, V. One can see that an opposite 
behaviour is ascribed to the age in comparison with the relaxation time used in statistical 
mechanics (Landau and Lifschitz 1967), which increases with the extension of the 
system. This outlines the different nature of the two: whereas the age measures the 
persistence time of a state, the relaxation time measures the evolution time towards a 
given (equilibrium) state. Anyway, if the transition probabilities are age-independent, 
(34) is a consequence of the scaling condition (28), which is fulfilled by a broad class 
of physicochemical systems (Van Kampen 1961,1976, Kubo et al 1973, Kitahara 1975). 

4. Integration through Van Kampen and KMK approximations 

Assuming the 'Van Kampen extensivity ansatz' (Van Kampen 1961, 1976): 

x = V(x) + v"*p = vx ( P )  = 0, (40) 

where 

(x) = v - ' ( x )  = v-' Ix Iox X9"(X, a )  d X  da, 

expressing (25) in terms of the scaled probability 

T " ( p )  d p  = P"(X) d X  = Psf( V(x)+ V'"p) V"'2 dp,  

P,((X)) = 0, 

(42) 

expanding the resulting equation and keeping the dominant terms in V,  we have 

j = 1, . . . , s, (43) 

with 

From (43) we can determine the steady values of the means (xl), . . . , (xs). On the 
other hand, the normalised solution of (44) is given by 

TSf(p)  = (27r-''2 (det C)-'"exp( - ip tC- 'p ) ,  (48) 

(Van Kampen 1976), where the covariance matrix 

is the solution of the matricial equation 
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The Van Kampen approximation fails when dealing with critical states. For such 
cases the more general method of Kubo, Matsuo and Kitahara ( K M K )  is recommended, 
which is based on the 'Kubo extensivity ansatz': 

O"(x) - exp( VJ(x)), J (x)  - p, (50) 

(Kubo et a /  1973), where 

@"(x) = V S P S t (  V X ) .  

Introducing the operator 

6 = v - l a x  = / I  PI II = / I  v - ' a x ,  113 i =  1 , .  . . , s 

and the 'Hamiltonian' 

f i ( ~ , p ) = ~ ~ ~ d A X [ l - e x p (  -TAXtp,)](C(x;AX) . . .  ) (53) 

equation (25) becomes 

H ( x ,  v-'a,)o"(x) = 0. (54) 

Substituting equation (51) into (54) and taking the dominant terms in V results in 
a stationary Hamilton-Jacobi equation: 

H(x, a J ( x ) )  = 0, ( 5 5 )  

and thus the integration of (25) reduces to the integration of the characteristic system 
attached to ( 5 5 )  

dxdd,,H = dpl/-a,,H = d J / C  ptap,H, / = 1, . . . , s, (56 )  
I 

where 

PI = a,,J(x), i = 1, . . . , s. (57) 

5. The principle of detailed balancing 

For age-structured systems the detailed balance condition may be formulated as follows: 

J P ( X ' ,  a ')  W(X'-+X; a ' )  d a '  = J S* ' (X ,  a )  W ( X  -+ X'; a )  da.  
0 0 

Equation (58) requires that the number of transitions from the state X' to the state X 
equals the number of reverse ones. Here we regard this principle merely as a hypothesis, 
the validity of which is to be checked in every particular situation. 

Using equations (20) and ( 2 6 ) ,  (58) may be given in an alternative form 

PS'(X')I.i/'(X'+X) = P"(X)I.i/'(X+X'), (59) 

which, obviously, satisfies (25).  
If (58) or (59) are fulfilled, then a straightforward solution for P"(X) and then for 

P"(X, a )  is given by the Haken (1975) method, which is independent of the scaling 
hypotheses (34) or (36). 
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6. Equilibrium chemical fluctuations 

The problem of chemical fluctuations has been extensively studied (Gardiner 1983). 
To illustrate the peculiarities of the above presented model, we shall consider a closed 
s component system, at equilibrium, involving a chemical reaction 

where k' are the forward and backward rate constants. The composition fluctuations 
of such systems may be described by means of a single extensive variable, the reaction 
extent, 5 (De Donder 1936). This one may be expressed in terms of the numbers, N,, 
of A, molecules as follows: 

i =  1,. . . , s (61) = (N, - NF)/f,, 

where 

J;  = v: - v; (62) 

and NF are the most probable values of N,  ( i  = 1, .  , . , s). Obviously, according to 
this definition, the most probable value of E is 0. 

Supposing that the stochastic version of the mass action law (Gardiner 1983) is 
valid, the equilibrium fluctuations may be expressed by means of a phenomenological 
master equation 

W ( z ' +  E ) p s ' ( s ' )  dE'-  W ( s +  a')P"(s) d z ' =  0 (63) I I 
where 

W ( Z  + E') = 1 8(Z - E'* 1) V'-""T k' n [ ( NF +LE) . . . (NT +AS - V: + l)], (64) 
* I = I  

and V is the system volume. 

Os'( 5) d[ = Ps'(S = Vg) V d(  

Within the framework of the K M K  approximation the solution of (63) is the following 

where 

and 

(Vlad er a1 1984b). 

age of a fluctuation state. The direct application of (31), (35) and (63) leads to 
Our present method allows in addition to evaluate the statistical properties of the 

(68) R"(aIE = Vg) d a  = w ( g )  exp(-aVw(g)) d(aV),  
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with 

which evidently fulfils the scaling condition (34). The moments corresponding to (68) 
are 

(a ) ,  = @ - I ( [ )  v-’ 
(ha2 ) ,  = U- ’ ( ( )  V I , .  

Equations (68), (70) and  (71) are generalisations of the relationships derived by solc 
(1974) in the case of chemical equilibrium A,@A,, by applying a different approach. 

The next step could be to generalise the classical stochastic model of mass action 
law, considering that the reaction rates are age-dependent. Moreover, we may assume 
that they obey the scaling condition (36), i.e. 

k’= k’(aV).  (72) 

The age dependence would be plausible in the case of fast processes, for which the 
regression of fluctuations towards equilibrium is non-Markovian. Evidently, this 
approach is purely phenomenological. 

Taking into account (72), after simple but lengthy manipulations the K M K  approxi- 
mation leads to 

where 

n* = lln:ll, f= IILII, i = 1, . . . , s, (74) 

and  nT,. . . , n: fulfil the condition 

with 

Equation (77) is similar to the thermodynamic equilibrium condition for ideal 
systems (67) with the difference that, due to the age dependence, f? is no longer 
constant. Its dependence on n* is given by (78). 
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7. Conclusions 

Our approach leads to a better understanding of the behaviour of physical systems 
described by a P M E  which obeys (25). The main result is given by (31):  the age 
distribution of a fluctuation state is exponential and is subjected to the scaling condition 
(34). This property is applicable to a large class of natural phenomena, such as 
generation-recombination events in semiconductors, chemical fluctuations, etc. 

The introduction of age-dependent transition probabilities leads to a new type of 
stochastic process, somewhat similar to the theory of continuous time random walks 
(CTRW) (Montroll and West 1979). As well as the CTRW, our approach is purely 
phenomenological. 

Even if the transition probabilities are age-dependent, the stationary states may be 
described formally by means of a 'phenomenological master equation'. Unfortunately, 
this method is of restricted applicability. Thus, even at equilibrium, the evaluation of 
the temporal correlation functions cannot be reduced to the integration of a phenomeno- 
logical master equation. The approach is limited to the evaluation of fluctuations at 
a given instant. 

To simplify the integration methods we introduced an  age scaling condition ( a  = 
r /  V- V-') ,  affording the application of Van Kampen and  Kubo-Matsuo-Kitahara 
approximations. 

The scaling condition for the age arose from purely heuristic considerations: its 
validity was rigorously proved for Markovian systems obeying (28), and then extended 
to age-dependent case. This procedure is open to discussion. 
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